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ABSTRACT 

A three-dimensional Navier-Stokes code has been de- 
veloped for analysis of turbomachinery blade rows and 
other internal flows. The Navier-Stokes equations are 
written in a Cartesian coordinate system rotating about 
the z-axis, and then mapped to  a general body-fitted 
coordinate system. Streamwise viscous terms are ne- 
glected using the thin-layer assumption, and turbulence 
effects are modelled using the Baldwin-Lomax turbulence 
model. The equations are discretized using finite differ- 
ences on stacked C-type grids and are solved using a mul- 
tistage Runge-Kutta algorithm with a spatially-varying 
time step and implicit residual smoothing. 

Calculations have been made of a horseshoe vortex 
formed in front of a flat plate with a round leading edge 
standing in a turbulent endwall boundary layer. Compar- 
isons are made with experimental data taken by Eckerle 
and Langston for a circular cylinder under similar con- 
ditions. Computed and measured results are compared 
in terms of endwall flow visualization pictures and total 
pressure loss contours and vector plots on the symme- 
try plane. Calculated details of the primary vortex show 
excellent agreement with the experimental data. The cal- 
culations also show a small secondary vortex that was not 
seen experimentally. The calculations required about 1.6 
million words of storage and 1.3 hours of CPU time on a 
Cray X-MP computer. 

Calculations have also been made of an annular tur- 
bine stator that has been tested experimentally a t  NASA 
Lewis. The Mach number ranged from from about 0.21 a t  
the inlet to 0.67 a t  the exit, and the axial chord Reynolds 
number was about 1.7 x lo5. Computed surface pressure 
distributions compare well with measured values at three 
span-wise locations. The endwall boundary layers pro- 
duce horseshoe vortices a t  the leading edge of the blade. 
Computed wake profiles resemble the measured profiles, 
but computed efficiencies are lower than measured values 
by 3 factor of two. 

INTRODUCTION 

Much of our work in the past few years has in- 
volved the analysis of two-dimensional or quasi-three- 
dimensional blade-to-blade flows in turbomachinery'*2. 
In these two references, both Euler and Navier-Stokes re- 
sults were presented for each blade row considered, and in 
each case a significant viscous effect was observed. These 
effects included such things as a pressure-surface or 'cove' 
separation on an axial turbine blade, a reduction in the 
choking mass flow and a change in shock location for an 
axial compressor blade, and a reduction in the peak Mach 
number and shock strength near the leading edge of a 

centrifugal impeller. Each of these two-dimensional vis- 
cous effects can be expected to lead to  secondary flows in 
three dimensions. Complex geometries, endwall bound- 
ary layers, tip clearance effects, etc. also lead to three- 
dimensional flows in turbomachinery. It is the goal of 
the present work to  begin to predict some of these three- 
dimensional viscous effects. 

Several steady three-dimensional analyses for tur- 
bomachinery have been published lately. Among them 
are the work of Dawes3 and Subramanian and Bozzola4. 
Both used Runge-Kutta schemes implemented on sheared 
H-type grids. H-grids are particularly easy to  generate 
and implement for turbomachinery calculations, but suf- 
fer from poor leading-edge resolution. Rai5 has published 
a notable analysis of unsteady threedimensional rotor- 
stator interaction in an axial turbine. He used a third- 
order accurate upwind implicit scheme and a system of 
patched and overlaid 0- and 11-type grids for good reso- 
lution of viscous phenomena. His analysis has not been 
used for steady flows, however. 

In this paper we describe a numerical method for 
analyzing three-dimensional viscous flows in isolated tur- 
bomachinery blade passages. The underlying Cartesian 
formulation allows the method to  be applied easily to 
both Cartesian and cylindrical geometries. Stacked C- 
type grids give good resolution of critical leading-edge 
regions. 

A multistage Runge-Kutta scheme is used to  solve 
the finite-difference form of the thin-layer Navier-Stokes 
equations with a Baldwin-Lomax turbulence model. A 
spatially-varying time step and implicit residual smooth- 
ing are used to accelerate convergence of the scheme to a 
steady state. Two calculations are presented to validate 
the analysis. The first calculation shows the formation 
of a horseshoe vortex at the leading edge of a flat plate 
with a round leading edge that stands in a turbulent end- 
wall boundary layer. Comparisons made between calcu- 
lated results and experimental data for a circular cylin- 
der under similar conditions show excellent agreement 
between static pressure distributions and flow visualiea- 
tion pictures on the endwall, and between static and total 
pressure contours and velocity vector plots made on the 
symmetry plane. The second calculation is of the flow 
through an annular turbine stator. Comparisons made 
between calculated and measured static pressure distri- 
butions compare well at three span-wise locations. 

GOVERNING EQUATIONS 

The Navier-Stokes equations are written in a Carte- 
sian (2 ,  y, z )  coordinate system rotating with angular 
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velocity R about the axis. Th rotatic introduces 
source termn in the y- and z- momentum equations. The 
Cartesian equations are mapped to a general body-fitted 
( E ,  q, <) coordinate system using standard techniques. 
The (-coordinate direction is assumed to  follow the flow 
direction and the thin-layer approximation is used to 
drop all viscous derivatives in this direction. All vis- 
cous t e r n  in the cross-channel (q, s) plane are retained, 
with an option in the code to delete all crossderivatives 
if desired. The resulting equations are as follows. 

where: 

The velocities in 4 are absolute with respect to the co- 
ordinate system fixed to the blade. Relative velocities 
(denoted by a prime] are given by: 

u' = u 
v'=v-rlnZ 

w' = w + Ry 
(3) 

and the relative contravariant velocitiy components are 
given by: 

U' = Ezu + EvY' + EZW' 

V' = q,u + qyvf + q,w' 
W' = <=u + <,v' + {,W' 

(4) 
Note that although u' = u, U' # U. 

The energy and static pressure are given by: 

e = p [CJ + (u2 + Y2 + w')/2] 

p = (7 - 1) [e - p(u' + v z  + w2)/2] 

(5) 

(6) 

Using Stoke's hypothesis, A = - $pl the viscous flux 
Pv can be written as follows: 

pv = J - ' P [ O ,  F2, 41 F4, F5IT ( 7 4  

and 
2 Cl = q:: + rl,' + Or 

c,= 3 q rlrafJu + rluaov + Vratlw) 

c3 = rlrfz + rlvs, + VSSS 

c4 = $(<zarU + <yarV + <za,w) 
(35 = tlraru + qvarv + qrarw 

(74  
Terms multiplied by C1 and C2 lead to non-mixed second 
derivative viscous terms like u,,,,, while terms multiplied 
by C 4 5  lead to mixed-derivative terms like uVr. The 
viscous flux vector 8 can be written similarly, with di- 
rections 1 and < everywhere interchanged. 

Metric terms are defined wing the following rela- 
tions. 

[ :; ;; ::I 
L rlr sr 

(8) 
1 Yo% - Yr% Yr-? - Y V r  YC% - YvzC 1 ZqYr - ZrYo zrY( - ZQYr ZcY, - Z v Y t  

= J z~z,,  - z,,z~ ~ € 2 ,  - Z ~ Z (  Z,,.ZE - ZCZ,, 

where 
J =  

(Z(YrjZ, + ZrYtz, + ZoYrzC - ZtYrz, - ZnYtZr - Z < Y , ~ C ) - ~  

(9) 
The equations are nondimensionahed by arbitrary 

reference quantities (here the inlet total density pore/ 
and the total sonic velocity core! were used,) and the 
Reynolds number Re and Prandtl number P r  are defined 
in terms of these quantities. The equations assume that 
the specific heats C, and C, and Prandtl number are 
constant, that Stoke's hypothesis is valid, and that the 
effective viscosity for turbulent flows may be written as 

Pe/l = Plam + Pturb 

where the laminar viscosity is calculated using a power 
law function of temperature: 

( 10) 

with n = 3 for air. 

TURBULENCE MODEL 

The Baldwin-Lomax algebraic two-layer eddy viscos- 
ity model6 is applied on cross-channel (11, <) planes. Two 
modifications to the standard model are made to account 
for the endwall boundary layer and the blade boundary 
layer and wake, and their interaction in corners. 

First, the distance from the wall is calculated using 
the Buleev' length scale d: 

where s,, and sr are normal distances from the walls in 
the q- and <- directions respectively. This length scale 
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has the desirable property that d approaches the normal 
distance from one wall a t  large distances from the other 
wall. 

Secondly the turbulent viscosities are calculated 
across each boundary layer or wake separately, then the 
total turbulent viscosity is taken as the vector sum of the 
components, Le., 

This assumption has the desirable properties that outside 
of one viscous layer pturb  takes on values calculated for 
the other layer, that it goes to sero in the core flow, and 
that near corners it accounts for both walls. 

COMPUTATIONAL GRID 

Two-dimensional body-fitted grids for this work 
were generated using the GRAPE code developed by 
Sorenson '. Threedimensional grids were formed by 
stacking the 2-D grids. Figure 1 shows a 3-D grid around 
a plate with a round leading edge. For annular geome- 
tries the 2-D grids were stacked along a radial stacking 
line and stretched in the r)-direction so that the blade 
shape remained constant and the angular pitch of the 
outer (periodic) boundary remained constant. 

BOUNDARY CONDITIONS 

At  the inlet, total temperature To re/ is specified as 
a constant. A cdistribution of total pressure (PolPo ref) 
is specified, c/2/2- as a constant or as appropriate for an 
inlet boundary layer with given thickness and a power- 
law velocity profile. For Cartesian geometries the (2, y) 
and (2, z )  flow angles are specified. For cylindrical ge- 
ometries the (2, y) flow angle is replaced by the inlet whirl 
rug. 

For supersonic inlet flows, all flow variables are spec- 
ified a t  the inlet. For subsonic flows the inlet condi- 
tions are updated each iteration by extrapolating the 
upstream-running Riemann invariant R-  based on the 
absolute total velocity Q = du2 + v 2  + w2 to the inlet. 

The total velocity is then found from the TO using: 

(15) 
Velocity components are found from Q and the specified 
angles or whirl. Within the endwall boundary layer, that 
is, where Po/Porcf < 1, the v and w velocity components 
are found by extrapolation from upstream. The density 
is found using: 

For subsonic outflow the exit static pressure is spec- 
ified and ( p ,  pu, pu, pw)  are extrapolated. For Cartesian 
geometries the exit pressure is constant. For annular 
geometries the hub pressure is specified and the radial 
pressure distribution is found by integrating the axisym- 
metric radial momentum equation: 

dP - PVe2 P - - ( v z -  wy)2 dr r 13 

Sidewalls and the trailing-edge cut are treated as 
periodic boundaries. 

On the blade surface V' = 0, and for viscous flows 
U' = W' = 0. Blade surface pressures are found from the 
normal momentum equation. On the hub ( e  = 1) and tip 
( 5  = 5rnaz): 

W z  + 5 v L  + c * W € P +  (fzrlz + evvv + Szrl*)a,P 

. ,  
On the blades (r) = 1) the normal momentum equation 
can be found from (18) by replacing everywhere by r) 

and V' by W'. 

MULTISTAGE RUNGE-KUTTA ALGORITHM 

The governing equations are discretined using a 
node-centered finite difference scheme. Second order cen- 
tral differences are used throughout. 

The multistage Runge-Kutta scheme developed by 
Jameson, Schmidt, and Turkel' is used to advance the 
flow equations in time from an initial guess to a steady 
state. If we rewrite (I) as 

where Rr is the inviscid residual including the source 
term, RV is the viscous residual, an D is an artificial 
dissipation term described in the next section, then the 
multistage Runge-Kutta algorithm can be written as fol- 
lows: 

90 = Qn 
91 = Qo - aiJAt[Rr Qo - (Rv  + D )  QO] 

For efficiency both the physicial and artificial dissipation 
terms are calculated only a t  the first stage, then are held 
constant for subsequent stages. 

ARTIF IC IAL DISSIPATION 

The dissipative term D in (20)  is a nonconservative 
vereion of that used by Jameson et al.' It is given by: 

DQ = (4 + D o  + D , ) Q  ( 2 2 4  

3 



where the (direction operator is given by 

Dcq = c (v29cc - VrPcctc) (22b) 

(224 

where 
1 c =  - 

JAt 
in a coefficient that cancella similar terma in (21). To 
minimize the artificial dissipation in viscous regions we 
reduce C linearly acroas several grid points to  cero at  the 
walls. 

where 

The terms V, and V. are given by: 

and 

P2 = O( 1) 
P. = O(&) 

(221 1 
In smooth regions of the flow the dissipative terms are of 
third order and do not detract from the formal second- 
order accuracy of the scheme. Near shocks vi, j is large 
and the dissipative terms become locally of first order. 

THREE-DIMENSIONAL STABILITY LIMIT 

Applying a linear stability analysis to the inviscid 
form of (20-21) gives the following expression for the time 
step. 

C F L  
At 5 

I,lul+ l u p l  + l E p l  + c d g q T i j T =  
(234  

where 

L = I L I  + lllzl+ lfIl 
1, = I&lI + l l l Y l +  Ifvl 
1, = IL I  + lllrl+ If*( 

(23b) 
The Courant limit for a particular multistage scheme de- 
pends on the number of stages and the choice of coeffi- 
cients ui. See Ref. 9 for several examples. 

To accelerate convergence to a steady state we use 
the maximum permissible time step a t  each grid point so 
that the Courant number is constant everywhere. The 
time step is calculated once based on the initial condi- 
tions. It is stored and is not updated during the calcula- 
tions. 

IMPLICIT RESIDUAL SMOOTHING 

Residual smoothing was introduced by Lerat (see 
for example Ref. 10) for use with the Lax-Wendroff 
scheme and was later applied to Runge-Kutta schemes by 

Jameson". The technique involves replacing the residual 
calculated in (20) with a value that has been smoothed 
by an implicit filter, Le., 

where 6,c ,  6,,,, and 6,, are standard second difference 
operators and E € ,  e,, and E ,  are smoothing parameters. 

Linear stability analysis has shown that the Runge- 
Kutta scheme with implicit residual smoothing may be 
made unconditionally stable if the E smoothing parame- 
ters are made sufficiently large. In one dimension 

€1 f [ ($ )2 - l ]  (25) 

gives unconditional stability if A' is the Courant limit 
of the unsmoothed scheme, and X is a larger operating 
Courant number. In three dimensions different E'S may 
be used in each direction, and their magnitudes may be 
often be reduced below the value given by Eq. (25.) 

RESULTS 

Two sets of computed results are presented for pre- 
liminary validation of the code described above. The first 
set of results shows the structure of a horseshoe vortex 
formed a t  the base of a cylinder standing in a turbulent 
boundary layer. The second set of results is for turbu- 
lent flow through an annular turbine cascade. Computed 
results are compared to experimental data in each case. 

When a boundary layer approaches a local obstruc- 
tion such as the leading edge of a turbine blade, the low 
momentum fluid in the boundary layer often cannot over- 
come the local pressure gradient and the flow separates 
from the wall. In front of the obstacle the separation 
creates a vortex which convects around the sides of the 
obstacle and forms a characteristic horseshoe-shaped flow 
region. 

Eckerle and Langston" have made detailed mea- 
surements of the horseshoe vortex in front of and around 
a cylinder of diameter D centered between the sidewalls 
of a wind tunnel. Test conditions included an inlet Mach 
number of 0.084, RCD = 5.5 x lo5, and an upstream tur- 
bulent boundary layer thickness 6 = 0.lD. Detailed sur- 
face flow visualization and static pressure measurements 
were made, and static and total pressure measurements 
were taken using a five-hole probe. 

Figure 1 shows the grid used to compute Eckerle 
and Langston's flow. The grid shown has been coars- 
ened for clarity. The actual grid had 65 x 49 x 25 points 
with an initial spacing a t  the walls Asi = 0.0010. To 
avoid questions of trailing-edge vortex shedding, a tail 
board waa added from the back half of the cylinder to 
the exit boundary. The base grid is approximately 6D 
square and .5D high, to  match the dimensions of Eck- 
erle and Langston's wind tunnel test section. We used a 
symmetry condition at mid span but computed the full 
symmetric flow side-to-side. 

The experimental inlet Mach number of 0.084 is too 
low for the compressible algorithm used here, so the cal- 
culations were run with Mi, = 0.2. The peak Mach 
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number was 0.34 at the cylinder-plate junction, so the 
flow was essentially incompressible. The Reynolds num- 
ber and inlet boundary layer thickness were matched to 
the experimental data. 

Even with Min = 0.2 the four-stage Runge-Kutta 
scheme seemed to  converge poorly, so we eventually ran 
the calculations with a two-stage scheme with ai = 
(1.2, l.), CFL = 4., and implicit residual smoothing at  
each stage with e t  = 2., e,, = cr = 4. The initial conver- 
gence rate was fast, as shown in Fig. 2 by the histories 
of the maximum and r m s  residuals, but after 1000 iter- 
ations the solution showed only a tiny horseshoe vortex 
that did not match the data. Over the next 3000 iter- 
ations the residuals changed little, but the vortex grew 
and moved upstream until it stabilized a t  the position 
shown later. The total solution took 1.3 hours on a Cray 
X-MP computer. 

Figures 3 and 4 compare the calculated and experi- 
mental data on the endwall. Figure 3 shows contours of 
constant static pressure coefficient,defined by: 

Computed contours are on the bottom and measured 
contours are on the top. The calculations show excel- 
lent agreement with the data from the symmetry plane 
to about 45 degrees around the cylinder, where the in- 
fluence of the tailboard becomes apparent. The lower 
part of Figure 4 shows a flow visualization picture made 
with ink dots on the endwall. It clearly shows the sepa- 
ration line and reverse flow region ahead of the cylinder. 
The computed vector plot at  the top of the figure shows 
close agreement with the measured separation line loca- 
tion and flow directions. The vectors are one point off 
the endwall, and are all drawn to the same length, so 
they show direction only. 

Figure 5 compares the static pressure coefficient dis- 
tributions on the endwall along the symmetry line ahead 
of the cylinder. The experimental data (circles) show 
a general pressure rise upstream due to the cylinder 
blockage, but also a large dip in the pressure inside the 
separated region. Two vertical bars indicate substan- 
tial unsteadiness in the experimental data. Eckerle and 
Langston included a 2-D potential solution (solid line) 
for comparison. The computed solution (line with trian- 
gles) shows good agreement with the data ahead of the 
saddle point, but falls short of predicting the magnitude 
of the pressure dip. The discrepancy may be due to the 
unsteadiness in the real flow or to lack of resolution in 
the computed solution. 

Figure 6 compares computed (bottom) and experi- 
mental (top) velocity vectors and total pressure loss co- 
efficient contours on the symmetry plane upstream of the 
cylinder. The total pressure loss coefficient is defined by: 

(27) 

These contours show nearly horizontal boundary layer- 
like flow upstream that rolls up into a vortex with a high 
loss core. The low loss fluid above the boundary layer 
curves down the face of the cylinder and carries high 
momentum fluid to the region near the cylinder-endwall 

junction. There is excellent agreement between the com- 
puted and experimental data. 

The velocity vectors show how the flow rolls up to 
form a horseshoe ahead of the cylinder. Experimental 
velocity vectors are missing in areas where the flow an- 
gle exceeded the calibrated range of the five-hole probe. 
From this data Eckerle and Langston12 concluded that 
“The reverse flow did not roll up to  form a vortex, 
however. The vectors clearly show that a closed vor- 
tex was not present in the plane of symmetry, though 
positive pitch angles in a portion of the reverse flow at 
RID = 0.72 and Y/D = 0.02 may indicate the start of 
vortex formation. Rather than rolling up, flow passed 
out of the plane and proceeded tangentially around the 
cylinder.” 

The computed vectors clearly show a vortex in the 
symmetry plane. A small counterrotating secondary vor- 
tex is also shown a t  the cylinder-endwall junction. The 
dimension of the secondary vortex is about 1.5 times the 
diameter of the five-hole probe, and would have been 
nearly impossible to detect experimentally. 

The second set of results is for an annular cascade 
of constant profile turbine stator vanes developed and 
tested a t  NASA The annular ring has 36 
vanes with a hub-tip radius ratio of 0.85 and a tip di- 
ameter of 508 mm. The vanes themselves are 38.10 mm 
high and have an axial chord of 38.23 mm. Design flow 
conditions are for a fully axial inflow with a hub-static to 
inlet-total pressure ratio of 0.6705. These conditions cor- 
respond to average inlet and exit Mach numbers of 0.211 
and 0.665 respectively. The Reynolds number based on 
axial chord is 1.73 x lo6. 

A grid consisting of 97 x 31 x 33 points with an initial 
spacing a t  the wall of 0.0002 of a blade chord was used 
for the flow calculations and is shown in Figure 7. 

The calculation was run with a four-stage scheme 
with ai = (1/4, 1/3, 1/2, 1) and CFL = 5.5, using 
implicit residual smoothing after each stage with e t  = 
e,, = et = 0.75. Convergence histories for the annular 
cascade calculation are shown in Fig. 8 where the log of 
the maximum and rms-averaged residuals have dropped 
approximately 3.5 orders of magnitude in 1500 iterations. 
The total CPU time was approximately 54 minutes for 
this calculation. 

Mach number contours a t  mid span are shown in Fig. 
9 to illustrate the blade boundary layer and wake thick- 
nesses. There are approximately 12 grid points across 
the pressure surface boundary layer. 

The inlet boundary later thicknesses were specified 
as 1.9 percent span on the hub and 7.1 percent span on 
the tip, corresponding to the measured data in Ref. 13. 
In Fig. 10, velocity vectors with superimposed contours 
of total pressure show how these boundary layers roll up 
into horseshoe vortices at  the leading edge of the blade. 
The primary vortices are considerably smaller than the 
inlet boundary layers, and each primary vortex has an 
even smaller counterrotating secondary vortex associated 
with it. 

Figure 11 shows a comparison between the calcu- 
lated surface static pressure distribution and data ob- 
tained by Goldman and S e a ~ h o l t s ’ ~  at  locations of 13.3, 
50.0, and 86.7 percent span. The calculated results agree 
very well with the experimental data a t  all spanwise lo- 

5 



cations. Although the blade section is constant from hub 
to tip, the increased pitch at  the tip increases the loading 
of the tip section considerably. 

Figure 12 compares calculated (top) and measured 
(bottom, Ref. 14) efficiency contours on a cross-channel 
surface located 1/3 axial chord downstream of the trail- 
ing edge. The kinetic energy efficiency is theoretically 
independent of the axial position and is defined by the 
following: 

v = Q L a l / Q L e a l  

where 

Q%,, = 2CpTo 1 - - ( Ta;:a‘) 

and TO is taken as constant. 
The efficiency contours clearly delineate the endwall 

boundary layers and wake. The computed wake is thin- 
ner than the measured wake and has higher losses (lower 
efficiency) a t  the center. Integrating the efficiencies over 
the entire area gives a total efficiency of 0.960 for the real 
machine and 0.923 for the calculations. The discrepancy 
could be due to inadequate resolution of the thick, round 
trailing edge, an inadequate turbulence model, or possi- 
bly to unsteady vortex shedding in the real flow. The 
high calculated losses seem not to be due to numerical 
dissipation. Indeed, the computed wake appears to be 
less dissipative than the measured wake, and the com- 
puted loss is remarkably insensitive to the artificial vis- 
cosity coefficient. Considerable work is clearly needed in 
the area of modelling the flows leaving the blunt trailing 
edges commonly found on turbomachinery blades. 

C 0 NCLUDING REMARKS 

A numerical analysis has been developed for three- 
dimensional viscous internal flows. The analysis solves 
the 3-D NavierStokes equations written in a general 
body-fitted coordinate system, including rotation about 
the z-axis. The thin-layer approximation is made in the 
streamwise direction but all viscous terms are included 
in the cross-planes. The Baldwin-Lomax eddy-viscosity 
model is used for turbulent flows. 

An explicit multistage Runge-Kutta scheme is used 
to solve the finitedifference form of the flow equations. 
A variable time step and implicit residual smoothing are 
used to accelerate the convergence of the scheme. Con- 
vergence rates are slow a t  low Mach numbers but reason- 
able for typical turbomachinery applications. We hope 
to improve convergence rates by adding multigrid to the 
code. 

Results showing the development of a horseshoe vor- 
tex in a turbulent boundary layer ahead of a cylinder are 
presented to validate the analysis. Excellent agreement 
is found between the computed results and experimental 
data for this case. 

Results for an annular turbine cascade also show 
horseshoe vortex development. Very good agreement was 
found between measured and computed surface pressure 
distributions. Computed losses were high and show the 
need for improved modelling of flows around blunt trail- 
ing edges commonly found in turbomachinery-. 

It is felt that with additional work and experience 
this analysis will prove to be a useful tool for investigat- 
ing three-dimensional viscous flow phenomena in turbo- 
machinery. 
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Figure 3. Comparison of measured (top) and computed 
(bottom) static pressure contours on the endwall. 
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Figure 5. Comparison of measured and computed static 
pressure distributions on the endwall symmetry line. 
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Figure 4. Comparison of endwall flow visualization (bot- 
tom) and computed flow direction vectors (top) ahead of 
the cylinder. - 

I ,  1 1  1 I I 1  1 - 1  I 1  I 

rcxrs i r  I LANGSIONS n o n s f w o r  vosfrx r X P r P i w Y 7  I =  33 
NACH 0.196 er 538257. ~ P N A  0 . 0 0  / i r e  woo 
c p r  coxrooas "iu o.000 " A X  0.600 INC 0.100 

Figure 6. Comparison of measured (top) and computed 
(bottom) velocity vectors and total pressure loss contours 
on the symmetry plane. 
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Figure 9. Mach number contours a t  mid-span. 
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Figure 11. Comparison of measured and computed pres- 
sure distributions at  three span-wise locations. 
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Figure 8. Convergence history for the annular turbine 
cascade problem. 
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pigure 12. Comparison of measured (bottom) and com- 
puted (top) efficiency contours 1/3 axial chord down- 
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